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Algebraic functions are used to provide an example of multiple-valued functions 
which coincide with a model (single-valued) free energy on one sheet of the 
Riemann surface in the neighborhood of a critical point. For the case of 
homogeneous free energies and a = a ' =  0, there are enough conditions to 
determine the behavior of the nearest singularities (branch points) to the critical 
point of the algebraic function. If no other singularities are present these branch 
points would represent the spinodal line. The particular exponents of the 
two-dimensional Ising model are used to provide a specific example. 

KEY WORDS: Algebraic function; branch points; critical point; free en- 
ergy; Ising model; Riemann surface; singularity; spinodal line. 

1. INTRODUCTION 

The purpose of this paper is to present an example of the use of algebraic 
functions as models for the free energy in the neighborhood of a critical 
point. The example chosen has the critical exponents of the two-dimen- 
sional Ising model. It will be shown that the nearest branch points to the 
critical point have square root behavior, a result which holds in general for 
homogeneous algebraic functions which correspond to the critical expo- 
nents a and a '  having the value zero. 

Since the method we will use was presented a number of years ago we 
will begin with a review of the mathematical description. ~1'2) This will be 
done in the next section. In Section 3 we will use the critical exponents of 
the two-dimensional Ising model ~3) to construct a specific example of an 
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algebraic function. In Section 4 we elaborate on the analytic behavior in 
order to demonstrate that the free energy does not violate certain analytic- 
ity conditions given by Lee and Yang. (4~ Finally, in Section 5 we discuss 
the implications of the result for systems with other critical exponents and 
possible generalizations. 

2. MATHEMATICAL PRELIMINARIES 

Our starting point is a mathematical description of the free energy of a 
system in the neighborhood of a critical point. We choose that thermody- 
namic potential whose natural variables are naturally intensive. For exam- 
ple, for a l iquid-vapor system we can look at the Gibbs free energy per 
particle ( G / N  = chemical potential/~) as a function of pressure and tem- 
perature. For a ferromagnet we look at that free energy which is a natural 
function of applied magnetic field H and temperature T. In either case the 
qualitative mathematical feature is that the isotherms of the free energy 
(which we shall refer to as F) have a continuous derivative for T > T c and 
a discontinuous derivative at a particular value of the field variable 
(pressure in the case of a fluid) for T < T c. 

We will now take as our definition of a critical point the following 
generalization of van der Waals thesis title (On the Continuity of Liquid 
and Vapor States). (5) Our generalization is given by the insertion of the 
word "analytic" before "continuity" so that we have the phrase "analytic 
continuity of liquid and vapor states." By this we mean that the free energy 
is an analytic function on the real H and T axes with a singularity at the 
critical point (H  = 0, T = Tc) and a possible line of singularities on the 
coexistence curve (H  = 0, T < Tc) such that F has a discontinuous deriva- 
tive in H. Thus we have 

M+ = OF n-~o+ ~ -  ~-~ n~o = M  OH 

Despite the apparent complication of the foregoing description, there 
is actually a well-known class of functions which can exhibit the desired 
behavior. These functions are known as algebraic functions and are multi- 
ple valued with branch points (fractional power, positive or negative) as 
their only singularities. (6) The way they effect a discontinuous derivative is 
illustrated by the Weiss molecular field theory (7) or equivalently van der 
Waals equation of state. Van der Waals equation of state is actually a 
third-order algebraic equation defining the density implicitly. However, the 
Weiss molecular field theory defines the corresponding quantity (magneti- 
zation) as a solution to a transcendental equation. This brings us to the 
main point of the discussion. Obviously we cannot claim that any free 
energy is an algebraic function even if the critical exponents are rational. 
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Clearly, the Weiss molecular field theory already violates such an assertion. 
However, algebraic functions are examples of a class of multiple-valued 
functions whose Riemann surface might be related to the Riemann surface 
of the free energy of actual models in the neighborhood of the critical point 
if such a Riemann surface exists, i.e., if the true free energy is analytically 
continuable onto more than one sheet. Evidence for and against such a 
continuation has been given, respectively, by the author (8) and by R. B. 
Griffiths. (9) In addition, previous work by Fisher and Langer on the 
one-dimensional droplet model has shown that there can be an essential 
singularity in the density at the condensation point below To. (1~ How- 
ever, these essential singularities are continued above Tc and thus the free 
energy, although single valued, does not satisfy the hypotheses of Ref. 8. 
Although such a free energy remains a distinct possibility, we feel that a 
result of this nature violates the physical spirit of a critical point which is 
the indistinguishability of the liquid and vapor phases above To. The 
absolute distinguishability was noted by Fisher in Ref. 10. 

The singularities (branch points) of the algebraic function in the 
neighborhood of the critical point approach the critical point as the 
temperature approaches the critical temperature. It is well known that the 
Weiss molecular field theory free energy has square root branch points 
which approach the critical point. These lead to a finite magnetization at 
zero applied field when T < T~. It is also well known that there are 
solutions to the transcendental equation which yield a finite magnetization 
at zero applied field for all temperatures. These solutions, however, repre- 
sent branches which are not connected to the three branches which give the 
physical values in some finite neighborhood of the critical point. Thus we 
can speak of the appropriate third-order algebraic function as equivalent to 
the Weiss molecular field theory in this neighborhood. This algebraic 
function is given by 

~9 I3~M2 -4- 8-!1/44 P ( F , H , t )  F ( F + 3 t 2 ) z + ( 2 - - - ] F t + 3 2 "  I - - 6 4 - - = 0  (1) 

w h e r e t =  T -  T c. 
Three isotherms are shown in Fig. la and two isochamps are shown in 

Fig. lb. It is easy to imagine a generalization of the third-order polynomial 
representing the molecular field theory to higher-order polynomials which 
would have the same general characteristics on the real t and H axes hut 
with different order branch points and thus different critical exponents. 
The problem comes in determining whether the general characteristics 
place any restrictions on the types of algebraic functions one can have. The 
specific features of algebraic functions are notoriously hard to ascertain 
and until the present instance this description was devoid of any practical 
content except to provide a picture of possible branch point behavior. In 
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Fig. 1. Three isotherms of F vs. H and two isochamps of F vs. t for the molecular field 
theory. The dashed lines show nonphysical values. 

the next section we shall show how the form of the algebraic function 
modeling the two-dimensional Ising model free energy is self-restricting to 
the point of providing information about the nearest nonphysical singulari- 
ties (the so-called spinodal line). In the following discussion we will use the 
term "physical sheet" to denote the complex H plane for real t which 
contains the single-valued function defined as that part of the multiple- 
valued function which coincides with the physical (thermodynamically 
stable) free energy on the real H axis and has the analytic properties 
previously mentioned. 

3. EXAMPLES OF ALGEBRAIC FUNCTIONS 

The problem of determining the singularities (branch points) of an 
algebraic function boils down to finding the roots of the discriminant of the 
defining polynomial. Since the discriminant of even a very low-order 
polynomial can be of order greater than four, it follows that no closed 
solutions can be obtained unless the factorization is obvious. It would thus 
appear that a polynomial representing the two-dimensional Ising model 
(which, as we shall see, is of order 15) would be hopelessly intractable. That 
this is not the case is the subject of this paper. 

We begin by illustrating the use of the discriminant for the third-order 
polynomial representing the molecular field theory. Suppose that we wish 
to find the form of a third-order polynomial representing the graphs of Fig. 
1. If we specialize to a free energy which is homogeneous in t and H then 
P ( F , H , t )  is also homogeneous in F, t, and H. If we also specify that 



On the Nature of the Nearest Singularities of Free Energy 47 

a = a '  = 0, /3 = 1 /2  and  "~ = ~,' = 1, the critical exponents  of the molecular  
field theory, then the po lynomia l  must  have  the fo rm 

P = F ( F +  t2)2+ (at 3 + b F t ) H  z + H 4 = 0 (2) 

where a and  b are number s  to be determined.  The  discr iminant  is a 4 • 4 
de te rminan t  each e lement  of which is related to one of the coefficients of F, 
which coefficient is itself a po lynomia l  in t and  H 2. However ,  we observe 
that, regarded as a funct ion of H 2, the po lynomia l  in Eq. (2) is quadra t ic  
with coefficients which are polynomials  in F and  t. Thus  we have  

P = G 2 + (at 3 + bFt)G + F ( F  + t2) 2=  0 (3) 

where  G = H 2. The  isotherms of G look like Fig. 2. The  cusp (branch  
point)  is still present  but  the crossing point  has turned into parabol ic  form. 
The  discr iminant  is now the famil iar  radical  b 2 - 4ae in the solution of the 
quadra t ic  equat ion ax 2 + bx + c = 0. For  the po lynomia l  of Eq. (3) this is 

D = (at 3 + bFt) 2 -  4 F ( F  + t2) 2 (4) 

Since there is only one cusp, this implies that  there is only one (multiple) 
root  of D = 0. Thus,  we require that  

D = - 4 F  3 + (6 2 - 8)t2F 2 + (2ab - 4)t4F + a2t 6 

= - 4 ( F  - F 0 )  3 ( 5 )  

where F 0 is the root  giving the posit ion of the cusp. Equat ion  (5) determines  
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Fig. 2. An isotherm for t < 0 of G vs. F for the molecular field theory. The dashed lines show 
nonphysical values. 
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a, b, and F0: 

The solution is 

4 F  3 = a2t  6 

- 12F0 2 = ( 2 a b  - 4)t 4 

12F 0 =  (b 2 -  8)t 2 

(6a) 

(6b) 

(6c) 

a - -  
9 

b = 2,~- 

F0__ " 1/2 

(7a) 

(7b) 

(7c) 

With the values of a and b given by Eq. (7), Eq. (2) is equivalent to Eq. (1) 

if we make the simple linear substitution t---> (~/3-/2)t and H - ~  ( 3 ~ - / 4 ) H .  
The molecular field theory can thus be regarded as that homogeneous free 
energy whose Riemann surface is given by that of a third-order algebraic 
function with only two cusps (branch points). This completely determines 
the coefficients of the defining polynomial. 

As an example of what might be considered "molecular field theories" 
in this mathematical  scheme, consider the free energy whose isotherms are 
given by Fig. 3. Such a free energy would have no discontinuity in its 
specific heat. In this case the function F has three branches with the same 

~ . .  -) 
x / f , "  

H 

\ x  x 
x\  

r 
l 

/ 

? 
/L,'H= 0 

~ t  

Fig. 3. An isotherm for t < 0 of F vs. H and two isochamps of F vs. t for a "molecular field 
theory" with no discontinuity in the specific heat. The dashed lines show nonphysical values. 
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value (zero) at H = 0 so that the homogeneous polynomial is given by 

P = F 3 + (at  3 + b F t ) H  2 + H 4 = 0 (8 )  

Again, regarding the polynomial P as a quadratic function of H 2, we have 

P = G 2 + (at  3 + b F t ) G  + F 3 = 0 (9) 

The discriminant is given by 

D = (at  3 + bFt)  2 -  4 F  3 

= - 4 F  3 + b2t2F 2 + 2abt4F+ a2t 6 (10) 

If we try to set D equal to - 4 ( F -  F0) 3 as before to ensure one branch 
point, we find 

4Fg = a2t 6 (1 la) 

- 12Fo 2 = 2abt 4 (1 lb) 

12F 0 = b2t 2 ( l l c )  

It is easily seen that these equations are incompatible since Eq. ( l l b )  
squared yields 36F 4 = a2b2t 8, whereas Eq. ( l l a )  multiplied by Eq. ( l l c )  
gives 48F  4 = a2b2t 8. Thus no nontrivial solution exists. The reason is 
obvious since the discriminant is of the form (1 + x) 2 - ax 3, which cannot 
be a perfect cube. We also see from Fig. 4 that there is a crossing point at 
F = 0 which must show up as a root of the discriminant. In order to get a 
root representing the branch point we must have a = 0. There is a physical 
( thermodynamic) reason for this which will be discussed later when we take 
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Fig. 4. An isotherm for t < 0 of G vs: F for the "molecular field theory" of Fig. 3. The 
dashed lines show nonphysical values. 
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up the general case. The discriminant is then 

D = - 4 F  3 + b2t2F 2 

= F:(b: t :  - 4F)  (12) 

and we can put b = 1. The algebraic function describing Fig. 3 is then given 
by 

P = F 3 + H 2 t F +  H 4 = 0 (13) 

Note that the branch point in Fig. 3 is not in the same place as the branch 
point in Fig. 4 since it is not a cusp. 

The generalization to non-molecular-field-theory values of the critical 
exponents (higher-order algebraic functions) is obvious at this point but the 
details are more intricate and require further elaboration. We will restrict 
the discussion in this paper to the case where a = a ' =  0 and the free 
energy is a homogeneous function of H and t. The particular case of the 
two-dimensional Ising model will be used since the exponents are known 
and there is no discontinuity in the specific heat. Although the two- 
dimensional Ising model has a logarithmic singularity in the specific heat, 
this could be incorporated into our example without changing the basic 
structure of the Riemann surface. In mathematical terms, a logarithmic 
singularity arises out of an Abelian integral using the algebraic function, 
hence the Riemann surface (and of necessity, the branch points associated 
with it) remains unchanged. We make this point because, although no 
claim is made that our example represents the actual topology of the Ising 
model free energy, it might be objected that it is too artificial. 

Some observations are needed in order to generalize the previous result 
to higher-order algebraic functions. For the two-dimensional Ising model, 
the critical exponents which will determine the defining polynomial are 
a = ~' - 0, /3 = 1/8. If the free energy is homogeneous in H and t then 
, / =  2 - a -  2/3 = 7 /4  and 6 = ( 2 -  0 0 / / 3 -  1 = 15. More generally, we 
can expand the free energy around the coexistence curve (H = 0) and the 
critical isotherm to get 

F = ~ a i ( t )H i (lna) 
i = o  

o r  

F =  ~ b~(H)t  i (14b) 
i = 0  

where at(t ) and bi(H ) are given by 

ai(t ) = t ~' (15a) 

b (n) (lSb) 
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with a i and fli defining the critical exponents. In particular, a0 = 2 -  a, 
a I =/3,  a 2 = - u 0 = 1 + 1/6.  Relations 14a and 14b provide a constraint 
on the defining polynomial as follows. The most general form for the 
polynomial defining the Riemann surface of the two-dimensional Ising 
model free energy is 

P ( F , H , t )  = P I ( F , t )  + P2(F , t )HS  + H 16 (16) 

where 

PI(F,  t) = F3(do t24 + d]Ft 22 + dzF2t 2~ + d3F3t 18 + d4F4t 16 

+ dsFSt 14 + d6F6t 12 + d7F7t I~ + dsFSt 8 + d9F9t 6 

+ dloFl~ 4 + d l lF l l t  2 + dl2F 12) (17a) 

Pz (F , t )  = Cot15+ clFt]3 + czF2t11+ c3F3t9 + c4F4t 7 

+ csFSt 5 + c6F6t 3 q- c7F7t " (17b) 

Some explanation is in order. First, P] is a 15th-order polynomial in F and 
H 16 is the corresponding homogeneous term because 6 = 15. (Recall that 
for t = 0, F =  H 1+1/~= H16/15.) Second, the only other power of H to 
occur is H 8 since, for a = 0, there are no homogeneous terms involving any 
other integral powers of H than H 16 for Hs.  (Recall that t ~ F t / 2 ~ H S / 1 5 .  
Hence for H n, say, the polynomial would have to contain F45/4H 4 ~  
tns/2H 4 which is not an integral power of F or t.) Third, F 3 must be the 
lowest power of F in P1 because there must be at least three branches of F 
having the value F = 0 at H = 0 for all t. (This ensures that a = a '  = 0, that 
is, no discontinuity in the specific heat.) 

We now apply the expansions given by Eqs. (14a) and (14b) to obtain 
further restrictions on P1 and P2. For t > 0, F is an even function of H. 
Thus 

F = a2( t )H 2 + a4( t )H 4 + . . .  (18) 

Likewise, for t < 0, F has two branches each of which has a finite 
derivative (non-zero order parameter) at H = 0. Therefore F has the form 

F =  a l ( t ) H  + a2( t )H 2 + . . .  (19) 

The problem is to reconcile these expansions with the form of P given by 
Eqs. (16) and (17). Clearly P] cannot have F 3 as the lowest power of F 
since a~(t) would be zero in Eq. (19). This is so because there is no other 
generator of H 3 in P. Hence the lowest power of F in P1 must be F 8. But 
then the branch given by Eq. (18) would require that the lowest power of F 
in P2 be F 4. Finally, the branch given by Eq. (19) then requires the lowest 
power of F in P1 to be F 12 in order to generate H 12. This scheme is now 
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Without loss 
solutions are 

consistent as all the proper powers of H can be generated from the 
expansions of the two branches. P thus has the form 

e = E12(do t6 q- d i e t  4 q- d2F2t 2 q- d3 F 3 )  

+ E4(CO t7 "4- c lE t  5 q- c2E2t 3 + c 3 E 3 t ) H  8 + n 16 (20)  

Having found the form of P(F, H, t) it is now necessary to determine 
the coefficients c and d. To do this we make an ansatz prompted by the 
molecular field theory. We will assume that there is only one cusp in F as a 
function of G ( =  Hs). There will then be only one cusp in G as a function 
of F. This is equivalent to saying that the diseriminant D is of the form 

D = F8(co t7 + clFt 5 + c2F2t 3 + c3F3t) z 

- 4Fl2(do t6 + d i E t  4 -Jr. d2F2t 2 q- d3 E 3 )  

= - 4 d 3 F S ( F  + bt2) 7 (21) 

of generality set d 3 = 1  and b = l .  The two sets of real 

c o = 2 c o = - 2 

c I = - 7 c I = 7 

C2 = --  35/4  C 2 = -- 35/4  

c 3 = 35/8  c 3 = 35/8 

d o = - 3 5 / 6 4  d o -- 35/64 

d 1 --- 119/64 d 1 = - 119/64 

d 2 = - 567/256 4 = 567/256 

(22) 

The second set corresponds to choosing t positive for temperatures above 
the critical temperature while the first set inverts this (t is negative for 
T > T~). The polynomial P(F, H, t) is therefore given by 

P ( F , H , t )  = F 15 567 tZF14 + ~ 4  t4F13 - 35 t6F12 + ~ tHaF 7 
256 64 

35 t3HSE 6 + 7tSHSF 5 _ 2t7HSF 4 + H16 
4 

= G 2 + t 3 - ~ t F 3 -  3--~t3F2+7tSF-2t7)F4G 

+ ( r  3 _ 567 tZr 2 + H 9  t 4F_  35.6~,-12 (23) 
256 6 4  

We now investigate the behavior of the singularities (branch points) on 
the nonphysical sheet. These correspond to the spinodal line in the molecu- 
lar field theory. The values of H are given by solving P(F, H, t ) =  0 with 



On the Nature of the Nearest Singularities of Free Energy 53 

F = 12" 

~56 5 tl5 G G 2 P(t 2, H, t) = t 30 + g + = 0 (24) 

5 tls (25) Co = / / o  = - 1-Z 

For t < 0, two of the roots in 110 lie on the real axis. They are 

H o =  + ( -  ~ t l s )  1/8 (26) 

This is the spinodal line. The behavior of F in the neighborhood of these 
branch points is easily found by expansion. Solving Eq. (23) in its quadratic 
form, we have 

G O + AG = � 8 9  + AF,,)___[P•(F o + AF, t ) -  4P2(F o + AF, , ) ] I /2)  

(27) 

where F o -- t 2. Since P1 and P2 are polynomials, we can expand in powers 
of AF: 

1 [-P~~ ~P~~ 1 ~2P~~ 2 ] 
G O + AG = ~ - ~----F 2 0 F  2 . . . .  

. . . .  1 [D(O) 0D(O ) 1 O2D(O)(AF)Z + ]1/2 (28) 
--- 2 OF A F +  2 0F 2 

where the superscript zeros indicate that the polynomial is evaluated at F o 
and t. Thus 

1 { 0P(~ . -  I 02P( ~  . . .  
A G = - ~  ~ & r +  2 0F  2 

f ~ ~0D(~ AF + 21 02/!) (~ 2 (AF) 2 + �9 �9 �9 (29) 

In the molecular field theory, D has the form ( F -  F0) 3 so that the lowest 
power of AF inside the square root is (AF) 3. In the present example, D has 
the form (F  - F0) 7 so that the lowest power of AF inside the square root is 
(AF) 7. This still represents a cusp but the isotherm of M vs. H no longer 
has the familiar "loop" of molecular field theory. The reason is that, un- 
like the molecular field theory, M has a cusp as a function of H. That 
is, M - M  0 = A M ~ - - A H + ( A H ) 2 + ( A H )  5/2+ . . .  rather than A M ~  
(AH) 1 / 2 + A H +  . . . .  

Our picture of the Riemann surface would now be complete were it 
not for the following annoying feature. Recall that in the molecular field 
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Fig. 5. 
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Branch points in H vs. F for the free energy defined by Eq. (23). The circled branch 
points for t < 0 give the spinodal line. 

theory the behavior of the nearest branch points is given by H 0 ~  ( -  0 3/2. 
These branch points are thus on the real H axis for t < 0  and this 
constitutes the spinodal line while for t > 0 they are on the imaginary H 
axis. In the present example, H 0 ~  ( -  t) 1s/8. The positions of these branch 
points for t < 0 and t > 0 are shown in Fig. 5. The two branch points on 
the real axis for t < 0 are not on the physical sheet and constitute the 
spinodal line, but for t > 0, two violations of the Yang-Lee  theorem for the 
two-dimensional Ising model appear to occur. The first is that there are no 
singularities on the imaginary H axis and the second is that there appear  to 
be singularities elsewhere on the physical sheet where they are forbidden to 
be. In the next section we shall show that both problems are resolved by 
further analysis of the function F(H, t). 

4. COMPLETE ANALYTIC BEHAVIOR OF THE LAST EXAMPLE 

Although the previous analysis has the advantage of simplicity, it does 
not yield all the branch points of F as a function of H and t. The reason is 

Fig. 6. Determinant giving the discriminant of the 15th-order polynomial of Eq. (23). 
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Fig. 7. Branch points of F vs. H for the free energy defined by Eq. (23) showing cuts in the 
H plane for t > 0 and t < 0. The circled branch points for t < 0 give the spinodal line. 

that only cusps of H as a function of F will remain cusps of F as a function 
of H. Quadratic behavior (no branch point) of H as a function of F will 
become square root behavior (branch point) of F as a function of H.  

To find all the branch points of F(H,t) it is thus necessary to 
determine the roots of the discriminant of P(F, H, t). Although the discrimi- 
nant  is the determinant of a 28 • 28 matrix it can be evaluated easily using 
MACSYMA, the computer program developed at M I T  for manipulating 
algebraic expressions. 2 The matrix has the form shown in Fig. 6 and can be 
immediately reduced to a 25 • 25 matrix. The determinant is found to be a 
22nd-order polynomial in G ( =  H 8) whose lowest power is G ~2. The roots 
are then given by 

G = 0 (12 times) (30a) 

5 t15 (7 times) (30b) G = - I -  ~ 

(30c) G = 334,357 t]5 = 0.0099646t15 
33,554,432 

G = (0.0548007 + 0.0212118i)t ~5 (30d) 

The three roots given by Eqs. (30c) and (30d) represent branch points 
which were not previously found. 

It remains to be demonstrated that the imaginary roots (branch points) 
given by Eq. (30c) for t > 0 lie on the physical sheet, while all the other 
branch points lie on other sheets. To do this, we used MACSYMA to make an 

2 I am indebted to Dr. V. Emery of Brookhaven National Laboratory for calling my attention 
to  MACSYMA. 



56 Coopersmith 

"excursion" in the complex H plane starting at the origin and going 
radially outward toward the branch point. The branch points lie on three 
rings of radii 0.561t15/8 I, 0.7021t~5/81, and 0.861t15/81. Referring to Figs. 7a 
and 7b, which show all the branch points of F in the H plane for t > 0 and 
t < 0, we tabulate the results in Table I. 

Our analysis is now complete. We conjecture that the analytic behav- 
ior of the nearest singularities to the critical point for the free energy of the 
two-dimensional Ising model is given by the Riemann surface of the 

Table I 

Value of F Value of F 
at on 

t Ring Angle branch point physical sheet Branch point 

> 0 1 + 8 real complex not  on physical sheet 

> 0 1 + 3y_~ real complex not  on physical sheet 
- 8 

> 0 2 0 0.705 • 0.375i real not on physical sheet 

> 0 2 + ~r 0.705 + 0.375i - 0.097 + 0.351i not  on physical sheet 
- 4 - 

> 0 2 + E 0.705 • 0.375i 0.578 • 0.367i not  on physical sheet 
2 

> 0 3 0 positive real negative real not  on physical sheet 

> 0 3 -+ 4 positive real complex not  on physical sheet 

> 0 3 + 2 positive real positive real on physical sheet 

(0.49) (0.49) (branch cuts from _+ 0.56i 
to • i ~ )  

< 0 1 0 positive real negative real on analytic continuation 
of physical sheet 
(spinodal lines) 

< 0 1 -+ 4 positive real complex not  on physical sheet 

< 0 l -+ 2 positive real complex not  on physical sheet 

< 0 2 + 8 0.705 • 0.375i - 0.766 • 0.320i not  on physical sheet 

< 0 2 +_ 3_~ 0.705 +_ 0.375i - 0.310 _+ 0.877i not  on physical sheet 
8 

< 0 3 +_ -~ real complex not on physical sheet 
8 

< 0 3 + 3___~ real complex not  on physical sheet 
- 8 
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Fig. 8. Two isotherms for t > 0 and t < 0 of F vs. H for the free energy defined by Eq. (23). 

algebraic function F(H, t) determined by Eq. (23). Two isotherms for t > 0 
and t < 0 are shown in Figs. 8a and 8b. What  is truly extraordinary is that 
the free energy is molecular field like in the variable G = H 8. 

5. D I S C U S S I O N  

The example we have just presented which has the critical exponents 
of the two-dimensional Ising model appears to be dependent on the 
detailed analysis of its singularity structure. Despite the apparent  complica- 
tion, it is easily seen that the feature responsible for the behavior of the 
nearest singularities is the fact that a = a ' - - 0 .  This is responsible for 
P(F,H,t)  being quadratic in H 8 in our present example and P(F,H,t)  
being quadratic in H 2 for the molecular field theory. This in turn causes the 
nearest singularities to be square root branch points. The result, which we 
now state precisely does not depend on this ansatz. 

Given an algebraic function of the form 

P(F, H, t) = PI(F, t) + P2(F, t)H 2n + H 4n (n an integer) 

which represents a free energy with a = a ' =  0, then the nearest branch 
points to the origin (t = H = 0) have "the form (AH)  m/2 for fixed t, where m 
is an integer dependent on the precise form of P1 and P2. 

To the extent that F does not have branch points which violate the 
Yang-Lee  theorem and no other singularities are present, the nearest 
branch points would represent the spinodal line. In order to test this, for the 
two-dimensional Ising model for example, one would have to perform an 
analytic continuation of the physical free energy onto the nearest nonphysi- 
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cal sheet if such an analytic continuation exists. For a real system it is a 
matter of speculation at present whether the measured spinodal line (me- 
tastable state) coincides with the analytic continuation of the free energy 
and thus no prediction can legitimately be made for experimental measure- 
ment. 

In future work we shall investigate the effect of imposing convexity as 
a condition on the function F(H, t) to see if this further limits the behavior 
of the nearest singularities. Other investigations will include an attempt to 
relax the condition a = a' = 0 and removal of the scaling condition (non- 
homogeneous free energies). 
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